
Enforcing consent conformance

in your authorization logic with a

fine-grained permissions model

Let’s talk about authorization and consent!

{

"alg": "HS256",

"typ": "JWT"

}.

{

“sub”: “Jeff Lombardo”,

“role”: “Sr Identity Specialist”,

“issuer”: “AWS”

}.

3ccdQeTNN7AfPj74JJq-RhJd

LwQ_fhR1yXVqzDNJo-Y

{

"alg": "HS256",

"typ": "JWT"

}.

{

“sub”: “Jeremy Ware”,

“role”: “Identity Specialist”,

“issuer”: “AWS”

}.

zTM34eETYMovwhQuB2LwC

7a7TfdYskYaFJzsS1dg3v8

State of
authorization

Identity reminder…

Principal(s)

Account(s)

Assigned attribute(s)
Credential(s) Entitlement(s)

Authentication

=

using

Identification

=

defining

Authorization

=

checking

Been assigned authenticator(s) Been assigned permission(s)

Standards of Digital Identity

Strong Cryptography

TLS

Identity
StandardsAWS

SigV4A

mTLS

Predicate
Standards

HTTP

Roles

are

static so

we

need

more…

RBAC – Role Based Access Control

Role

Blue

Role

Orange

Role

Yellow

Role

Pink

Role

Red

Authenticates and accesses to the application

Role

Blue

Role

Orange

Role

Yellow

Role

Pink

Role

Red

Resource 1

Resource N

…

Resource 2

Resource 3

P

P P

PP P

PP P

P
Role

#ff4b3e

Role

#ff3633

Role

#ff1c07

Role

#ff2934

Role

#ff47da

Role

#ff0dcf

Role

#ff5efc

Role

#d621ff

Role

#f4ff27

Role

#f4ff75

Role

#ffed94

Role

#fff12a
Role

#ffaa48

Role

#ffbd83

Role

#ff8b10

Role

#ffdd34

Role

#55daff

Role

#1cf4ff

Role

#36b5ff

All applications need to be

role aware via updates

How can our applications

handle this kind of explosion?

Role

#ff4b3e

Role

#ff3633

Role

#ff1c07

Role

#ff2934

Role

#ff47da

Role

#ff0dcf

Role

#ff5efc

Role

#d621ff

Role

#f4ff27

Role

#f4ff75

Role

#ffed94

Role

#fff12a
Role

#ffaa48

Role

#ffbd83

Role

#ff8b10

Role

#ffdd34

Role

#55daff

Role

#1cf4ff

Role

#36b5ff

ABAC - Attribute Based Access Control

Authenticates and accesses to the application

Tag

Blue

Tag

Orange

Tag

Yellow

Tag

Pink

Tag

Red

Resource 1

Resource N

…

Resource 2

Resource 3

Rules

grow

based on

context

growth…

All applications need to be

rule aware via updates

Tag

Blue

Tag

Blue

Tag

Blue

Tag

Orange

Tag

Orange

Tag

Yellow

Tag

Yellow

Tag

Pink

Tag

Red

Tag

Red

Team

Blue

Location is

Orange
Project

Yellow

Project

Pink
Department

Red

If user tag color ==

resource tag color,

then P

How can our applications

handle this kind of explosion?

Up to date
Enrolled by

enterprise

Used two factor

AuthN

Used two factor

AuthN

Location is

Montreal, QC

No previous

AuthN failure

And must be

2FA

Authenticated

And must be

from a known

location

And must

encompass

past behavior

Good but not good enough

We also need:

• One language of expression

to rule them all

• One source of truth

to homogenize them all

RBAC

ABAC

Pre packaged

groups of entitlements

Dynamic Access Control

based on

contextual information

PBAC - Policy-based access control

Fine-grained

Access defined down to the
level of individual resources
and users

Scalable

Easier to understand and
maintain

Dynamically manageable from
runtime

Does not require application
code changes

3.1.1 ZTA Using Enhanced Identity Governance

Individual resources or […] components protecting the resource

MUST have a way to forward requests to a policy engine […] and

approve the request before granting access.

PBAC - Core of a Zero Trust strategy

NIST SP800-207

(2020)

Never Trust, Always Verify Explicitly.

Treat every user, device, and application as untrusted and

unauthenticated. Authenticate and explicitly authorize to the least

privilege using dynamic security policies

DOD Zero Trust

Strategy and Roadmap

(2022)

Using centrally managed systems to provide enterprise identity

and access management services […] allowing agencies to more

uniformly enforce security policies that limit access.

M-22-09

(2022)

PBAC – OK but in which mode?

Centralized

Decentralized Distributed

Main objective is Governance

Main gain is Accuracy

Main objective is Enforcement

Main gain is Latency

Main objective is Definition

Main gain is Dynamism

XACML

Cedar
Rego

Mandatory Access
Control

Policy Based Access Control

Role Based Access Control
Attribute Based Access

Control

Predicate
Standards

Identity
standard
attempts

PBAC – OK but which one?

Zanzibar NGAC

Problem
with consent
management

Data Privacy regulations are the new normal

• GDPR

• CCPA

• ePrivacy

• LGPD

• QC-L25 / C-27

• and many more…

Data Privacy principle in one line

“Ensure that only the principals that shall have justified
access to Personal Information
effectively have access to it.”

16

And consent management guidance is mostly…

Data Processing Impact Assessment

Visible surface level

Consent collection

But consent management is more than that

Much more under

the surface
Who has access to what?

Who did access what?

Do we keep this data or not?

Who did consent to what?

Can you prove who consented?

How much does Consent differ from Policy?

• Consent and policy evaluation to allow are both required to access to data

• Consent is scoped, and so is an authorization policy

• Consent is time-bound, whereas for policies… it is more complicated

• Consent has a granter and a grantee, policy has mostly a grantee

Promoting Consent
as a first class

Authorization Policy

Policy

We need to expand a policy to be Consent aware

Grantee Granter

Scope
Time

boundaries

We can bound object to consent

Granter

Grantee

Scope

Time

boundaries

Integrity

assurance

Let’s apply that to Authorization policies

Granter
Integrity

assurance

Grantee

Scope

Time

boundaries

Integrating consent
based Authorization

in user
experience

Let’s share things!

TinyTodo

An example application to

learn Cedar, a new

language for expressing

Authorization rules

Find it at:

Basic bootstrapping of Authorization – Default deny

1

Allowing Groups to privileged actions - RBAC

2

Sharing with individuals - ABAC

3

Sharing with individuals (suite) – ABAC and consent

4

Demo

A tale of two sharings

Sharing with individuals - ABAC

3

Sharing with individuals (suite) – ABAC

and consent

4

Key
elements for

your AuthZ strategy

More than 500 Millions calls

Align with PARC mental model

Principal

Action

Condition

Resource

(1) https://www.youtube.com/watch?v=6DX7p-OirGU
(2) in 2021, for more: https://youtu.be/8_Xs8Ik0h1w?t=3053

PER SECONDS(2)

Easier for humans

to review

More efficient

for systems

to review(1) and enforce

12

https://www.youtube.com/watch?v=6DX7p-OirGU
https://youtu.be/8_Xs8Ik0h1w?t=3053

Build policies over 3 layers

Application Owner policies

“Allow any Resource owner

read, write, update, delete,

share on Resource”

End-user policies

“As Resource owner

PrincipalA, allow PrincipalB

for read on Resource”

Security policies

“Forbid any User share

Resource outside of

Resource Tenant”

Defined at

integration

Defined at

runtime

Defined at

deployment

Bake scope and time-boundaries into policies

Access Token
{ sub }

HTTPS Request

{ Method }

{ Path }

{ timeEpoch }

Traditional OAuth2 token validation process

{ scp }

Unblock capabilities

Review entitlements through graph

Direct Acyclic representations can show

more that standard queries

Generate proof of consent

For auditors For data subjects

https://kantarainitiative.org/file-downloads/consent-receipt-specification-v1-1-0/

Consent Receipt Specification

Version: 1.1.0

Editors: Mark Lizar, David Turner

https://kantarainitiative.org/file-downloads/consent-receipt-specification-v1-1-0/

Try Cedar, it is OpenSource
SDK

https://github.com/cedar-policy

Documentation

Examples

How we built Cedar

with automated

reasoning and

differential testing

https://github.com/cedar-policy

Your turn to play

Blog posts to learn more Amazon Verified Permissions

our own managed Cedar oriented Policy engine

AWS Community Builders

Join AWS Community Builders program to build relationships with AWS

product teams, AWS Heroes, and the AWS community

Using Open Source Cedar to write and enforce custom

AuthZ policies

A blog post to implement you first application using Cedar

for authorization

https://aws.amazon.com/developer/community/community-builders/
https://aws.amazon.com/blogs/opensource/using-open-source-cedar-to-write-and-enforce-custom-authorization-policies/

THANK YOU!

